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Implementation of Discrete-Time Systems

The two important forms of expressing system leading to different realizations of FIR &
IIR filters are
a) Difference equation form

y(n)==Y a,y(n—k)+ Y bx(n—k)

b) Ration of polynomials

M
bzt

H(Z)=—"—
1+ ZakZ_k
k=1

The different factors that influence choice of a specific realization are
e Computational complexity
e Memory requirements
¢ Finite-word-length
e Pipeline / parallel processing
Computation Complexity
e Numbers of arithmetic operations i.e multiplication, addition & divisions
¢ In the recent processors the fetch time from memory & number of times a
comparison between two numbers is performed per output sample is also
considered and found to be important

Memory requirements
e This is basically number of memory locations required to store the system
parameters, past inputs, past outputs, and any intermediate computed values.

Finite-word-length effects

¢ These effects refer to the quantization effects that are inherent in any digital
implementation of the system, either in hardware or in software.
Basically effect of truncation & rounding-off of samples
The extent of this effect varies with type of arithmetic used(fixed or floating)
The effects have influence on system characteristics.
A structure which is less sensitive to this effect need to be chosen.

Pipeline / Parallel Processing
e Suitability of the structure for pipelining & parallel processing is considered.

Structure for FIR Systems

FIR system is described by,
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M-1
y(n) =Y b x(n—k)
k=0
Or equivalently, the system function

M-1
H(Z)=)Y bz
k=0

) ) b, 0<n<n-1
Where we can identify h(n) = )
0 otherwise

Different FIR Structures
1. Direct form
2. Cascade form
3. Frequency-sampling realization
4. Lattice realization

Direct — Form Structure
Convolution formula is used to express FIR system given by,

)= hik) x(n—k)

e Non recursive structure

«(n)

@

Requires M-1 memory locations for storing the M-1 previous inputs
Computationally need M multiplications and M-1 additions per output point
Referred to as tapped delay line or transversal system

Efficient structure for linear phase FIR filters are possible where

h(n) =th(M —1-n)

«(n) . N O

i.f'fp
N - 7 -

i\ h(Z2) h(m-3)/2 him-1}/2
)

T

=

=1 =1
< =1

PROBLEM
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Realize the following system function using minimum number of multiplication

W) HZ) =141z Lz2 L 1 7o
3 4 4 3

We recognize h(n) =[1 1111l 1}

3747473
M is even = 6, and we observe h(n) = h(M-1-n) h(n) = h(5-n)
i.e h(0) = h(5) h(1) =h(4) h(2) =h(3)

Direct form structure for Linear phase FIR can be realized

wn) xin-l xn-2)
= I = ri
= i =
10 & LA
- ™ wln-4)
H ”'5__' 5 i }.fl ” -3'
i(n) Y hill)=l hif1=1/3 T hiZ)=1/4
a4 N (+R—
ARSI R
Exercise: Realize the following using system function using minimum number of
multiplication.
H(Z)= izl by 1o 1o 170 5o
4 3 2 2 3 4
m:9 h(n):[l’l’l’l’_l’_l’_l’_1:|
432 2 3 4
odd symmetry
h(n) = -h(M-1-n); h(n) = -h(8-n); h(m-1/2) =h(4)=0
h(0) = -h(8); h(1) =-h(7); h(2) =-h(6); h(@3)="-h(5)
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Cascade — Form Structure
The system function H(Z) is factored into product of second — order FIR system

HZ)=[]H:(2)

Where H,(Z)=b, +b,Z"' +b,Z7 k=1,2,....K
and K = integer part of (M+1) /2
¢ The filter parameter by may be equally distributed among the K filter section, such
that by = bjg by .... byo or it may be assigned to a single filter section
e The zeros of H(z) are grouped in pairs to produce the second — order FIR system

¢ Form pairs of complex-conjugate roots so that the coefficients {by;} are real
valued.

X(n) =X10) y1(n) yary ¥l vidnj=vln
— —»

X2(n) B

Xin)

| bko bk bz

Yi(n)=Xp.4 (N)

® In case of linear —phase FIR filter, the symmetry in h(n) implies that the zeros of
H(z) also exhibit a form of symmetry

e [f zk and zk* are pair of complex — conjugate zeros then 1/zk and 1/zk* are also a
pair complex —conjugate zeros. Thus simplified fourth order sections are formed.
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H (2)=Cp(—z,z2)A—z, ¥z )A-2"/z,)A-2""/2,.)
=C,,+ C,dz_1 + Ckzz_2 + Cklz_3 +z7*

Cpq Ciz

® SN

Problem: Realize the difference equation
y(n)=x(n)+0.25x(n—1)+0.5x(n—2)+0.75x(n—3) + x(n—4)
in cascade form.

Y(z)= X(2){1+0.25z7" +0.5z2 +0.75z7 +z )
CH(z)=1+0.25z7"+0.5z72+0.75z + ™
CH(z)=(1-1.1219z" +1.2181z72)(1+1.3719z™ +0.821z %)

H(z)=H,(2)H,(2)

Soln

2-1 2-1 Z"I Z"I

1 11219 1.218 1 1.13179 0.521

& * P -

Frequency Sampling realization:

We can express system function H(z) in terms of DFT samples H(k) which is given by

vl = H (k)
H(z)=(1- —2 7
(0)=0-z )N L Wi
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This form can be realized with cascade of FIR and IIR structures. The term (1—Z'N) is

. 1 & Hk)
realized as FIR and the term _Zﬁ as IIR structure.
N k=0 1_ N Z

The realization of the above freq sampling form shows necessity of complex arithmetic.
Incorporating symmetry in h(n) and symmetry properties of DFT of real sequences the
realization can be modified to have only real coefficients.

\._+
W, o

& )
W,

x(n)

y (n)

Lattice structures
Lattice structures offer many interesting features:

1. Upgrading filter orders is simple. Only additional stages need to be added instead
of redesigning the whole filter and recalculating the filter coefficients.

2. These filters are computationally very efficient than other filter structures in a
filter bank applications (eg. Wavelet Transform)

3. Lattice filters are less sensitive to finite word length effects.

Consider
H(z)= % =1+ gam OF

m is the order of the FIR filter and a,,(0)=1

whenm=1 Y@)/X@z) = 1+a,(1)z"
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ym)=x(m)+ a;(1)x(n-1)

f1(n) is known as upper channel output and r1(n)as lower channel output.

fo(n)= ro(n)=x(n)

fo(n)

W +) » £,(n)=y(n)

x(n)

> 1,(n)

The outputs are

fin) = fo(n)+kiry(n-1) la
r(n)y=k f,(n)+r,(n=1) 16
if k =a/(1),then f (n)=y(n)

If m=2

)Y(((ZZ)) =l+a,()z" +a,(2)z"
y(n)=x(n)+a,)x(n-1)+a,(2)x(n-2)
y(n)= fi(m)+k,r(n—1) (2)

Substituting 1a and 1b in (2)

y(n) = fo(n) + kiry(n=1) + k,[k, fo(n = 1) + r,(n — 2)]
= fo(m)+kr,(n=1)+k,k fo(n=1)+k,r,(n—-2)]

since f,(n)=r,(n)=x(n)

y(n)=xn)+kx(n-1)+k,kx(n—1)+ k,x(n—2)]
=x(n)+ (k, + kk,)x(n—=1)+ k,x(n - 2)
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We recognize
a,) =k, +kk,
a,() =k,

Solving the above equation we get

_a,(D) _
1_—1+a2(2) and k,=a,(2) 4

Equation (3) means that, the lattice structure for a second-order filter is simply a cascade
of two first-order filters with k1 and k2 as defined in eq (4)

foln) ()
o +

k2

k2
r1(n)

Similar to above, an Mth order FIR filter can be implemented by lattice structures with
M - stages

» ﬁp) ...... —» | fh-"l-’l(nl }=y(n}
— Stage 1 Stage 2 S(E?ﬁ
ru{n)r r1(n} i rQ(n.)..... rM_1 (n}

Direct Form -I to lattice structure

For m=M, M-1, ........... 2,1do
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k,=a,(m)
a,(i)—a,(m)a,(m—i)

> 1<i<m-1
-k,

a, (i) =

e The above expression fails if ky,=1. This is an indication that there isa zero on the
unit circle. If k=1, factor out this root from A(z) and the recursive formula can
be applied for reduced order system.

form=2and m=1
k,=a,2) & k =a/@1)

form=2&i=1
a.(1) = a,(N—a,(2)a,() _a,Ol1-a,(2)] _ a,(1)
1 1—k; 1-a2(2) 1+a,(2)
Thus k, :a2—(1)
1+a,(2)

Lattice to direct form -I

a,(0)=1
a,(m)=k,

a,(i)=a, (i)+a,(ma, (m—i) 1<i<m-1

Problem:
Given FIR filter H(Z)=1+2Z"'+1Z obtain lattice structure for the same
Given a,(1)=2, a,(2)=}4
Using the recursive equation for
m=M, M-1, ...... , 2,1
here M=2 therefore m =2, 1
ifm=2 k, =a,(2)=Y4
ifm=1k =a,Qd)
also, when m=2 and i=1

1
a, (1) = az( ) = 2 = g
I+a,(2) 1+)% 2
Hence k, =a,(1)=}%
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«n)

Problem:

Consider an FIR lattice filter with co-efficients k, = % , k,

FIR filter co-efficient for the direct form structure
(HZ)=a,(0)+a,()Z"" +a,(2Z7 +a,(3)Z7)

a,(0) =1

for m=2, i=1

for m=3, i=1

a,3)=k, =Y,

a,(1) = a,(1) +a,(2)a, (1)

1 1
=a,(D[1+a,(2)]= 5{1 + 5}

a,(1) = a, () +a;(3)a, (2)

2 11
="+

3 43

2 1 8+1
=4 —=—

3 12 12
2.3

12 4

(Y o f E;I nj = yin

rin
&

, ky = % Determine the

1
3

1
a,(2) =k, 25

1
o=k =

):g GETMYUNI



WWW. get myuni . con

for m=3 & i=2

a,(2)=a,(2)+a;(3)a,(1)

1 12
=—+==

3 43

I 1T 241
=4t ——=—

3 6 6
3.1

6 2

3 1 1
a,(0)=1, a3(1)—Z, a3(2)—5, a3(3)—z

x(n)

—1 [ -
e 7 Lo

T oall) =1 :%421 =0/4 %a D=V
[}U 'C-‘“-\:l-/;

+

yin)

Structures for IIR Filters

The IIR filters are represented by system function;

M
2 bt

H(Z)=—-"——
1+ z a,z’"
k=1

and corresponding difference equation given by,

y(n)== a,y(n—k)+ ) bx(n—k)

Different realization

1. Direct form-I
2. Direct form-II
3. Cascade form
4. Parallel form
5. Lattice form
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Direct form-I

e Straight forward Implementation of difference equation

e Simple
lj?‘| . . I | Z'_I
®n) f?\ ‘\% \;Jb/ (1_\] m Ul\ . ';.-":H:'
u
-HH -4 H'I _ag F a 1
"l y ?_l - —=-- Z_I i
<} 7 z

Direct form-II

_Y(@ _V() Y(2)

H = .
@) X(z2) X)) V(2
Vi) _ Nl ___________________ all poles
X(2) 1+ a,z"
%=(1+gbk1_k] ______ all zeros

v(n) =x(n)— iakv(n —-k)

y(n) =v(n)+ ibkv(n -1
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— (;{} B y(n)
i by
0
7 b
: - @
| b +
I
: by
by
n! -
— & S G SN}
A ] h]
D = &+
-39 E_l hi‘.
¥ g4 - | S—
. | .
| -3y | h !
- 4 -1 i . -1 L
:-I
< | <
b

AN M

e This realization requires M+N+! multiplication, M+N addition and the maximum of
{M, N} memory location

Cascade Form
H(z)=H,(2)H,(2)...H, (2)

N/
)‘4 GETMYUNI
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Where H, (Z) could be first order or second order section realized in Direct form — II

form i.e.,

by +b,Z" +b,Z7

l+a,Z" +a,Z"

And K is the integer part of (N+1)/2

e Similar to FIR cascade realization, the parameter by can be distributed equally among
the k filter section By that by = bygby.....bxo

e Second order sections are required to realize section which has complex-conjugate
poles with real co-efficients.

e Pairing the two complex-conjugate poles with a pair of complex-conjugate zeros or
real-valued zeros to form a subsystem of the type shown above done arbitrarily.

e Although all cascade realizations are equivalent for infinite precision arithmetic, the

various realizations may differ significantly when implemented with finite precision
arithmetic.

If H,(Z)=

Parallel form structure
If N>M we can express system function

N
H(Z)= C+Z - =C+) H,(2)
— P Z k=1
Where {px} are the poles, { A} are the coefficients in the partial fraction expansion, and
the constant C is defined as C =b,, /a,

xin) ) —B'Gj

E

H (1) N
k

A

(

by +b,Z"'

Where H, (Z) =
1 l+a,Z" +a,Z"
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Problem :

Determine the

(1)Direct form-I (i1) Direct form-II (i11) Cascade &
(iv)Parallel form realization of the system function

10(-1z"Yi-2z" \i1+22")
—1z -tz -G+ iz - (- j)z)

H(Z)= (l

100-2z"+1z>1+22")
(+1z7+2z22)1-z"+127)

o o(+3zt -2z 12727)
Hz= (-s5z'+az2 1734377
8 32 32 64

(-14.75-12.90z7") N (24.50+26.82z7")

H(z)=

3 1
1+—z'+ 77 -z +-77
( 2 2 ) ( 5 )

S:{ GETMYUNI
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C’MC&A};‘{’D“'M
Wz = +h® Y¥al¥)
= ~\
JTNCTAT \-4/61"»«551‘ Mogye toCHED)
- Azt
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I
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Problem:
Obtain the direct form — I, direct form-II
Cascade and parallel form realization for the following system,
y(n)=-0.1 y(n-1)+0.2y(n-2)+3x(n)+3.6 x(n-1)+0.6 x(n-2)

Diveck [99\'»\ n
/'(l K\'y\nv 2\ [='a) BD’H’\ 7‘0\’“!4/, n,\(& (F‘MQV\Z J‘(-Z_f
ey = I8 RS T R
X ()

4ozt —p2z?

W) | .3 Yiny

.D(Y( & (f("( mn I

)z( GETMYUNI
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H(z): 2 o .
L) \.\f{_) - ft 36z "{ O (,‘Z’L

X (-2) I
[+0.1zt . 02772

2+0.6') ( (+27)
Qtosz) Cl—ogz)
Lok Hizy= 2to6z)

& IH,zy- (+2)
R T T lf(\SZ’ /.(\.qz‘

’

>
Pasta (A fin,

J'('Z)r _'\;

> ‘J(")

Lattice Structure for IIR System
Consider an All-pole system with system function.
1 1

140, 0zt @

H(Z)=

The corresponding difference equation for this IIR system is,
N
y(n)==3 ay (k) y(n—k)+x(n)
k=1
OR

):i GETMYUNI
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x(n) = y(n)+ Y ay (k) y(n—k)

For N=1

x(n)=ym)+a,()y(n-1)
Which can realized as,

20n) Y = 4

-&-—"G’J : 300\)
A
We observe
x(n) = f,(n)
y(n) = fo(n) = fi(n)—k,g,(n—1)
=x(n)—k,y(n—-1) k,=a,(l)
g (n)y=k f,(n)+g,(n=1)=ky(n)+y(n-1)
For N=2, then

y(n) = x(n)—a,()y(n—1)-a,(2) y(n-2)

This output can be obtained from a two-stage lattice filter as shown in below fig

xeny , H O o f semr~
‘b[n)

- |2 1t S @3"(")

f2(n) = x(n)

fim = f,(n) =k, g,(n=1)
g, (m) =k, fi(m)+g (n—1)
Jo(m) = fi(n) =k g,(n—1)
& (n) =k foy(n)+g,(n—1)

y(n) = fo(n): go(n) = fl(n)—klgo(n—l)
=f,(n)—k,g,(n-1)—k,g,(n—-1)

S:{ GETMYUNI
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= f,m) =kl fo(n=1) + g, (n=2)]— kg, (n—1)
= x(n) =k, [k, y(n =) + y(n = 2)| = k; y(n = 1)
=x(n)—k,(+ky)y(n—1D)—k,y(n—-2)
Similarly
g, (M) =k,y(n)+k (1+k,)y(n-D+ y(n-2)
We observe
a,0)=La,()=k,(1+k,);a,(2)=k,
N-stage IIR filter realized in lattice structure is,

€n Far (W) $ln)

- T +
Ky
~l<y
T wlny e ol
fy () =x(n)
fm—l(n) = fm(n)—kmgm_l(n—l) m=N, N-1,---1
g, M=k, f, (m+g, (n=1) m=N, N-1,---1

y(n) = fo(n) = g, (n)

Conversion from lattice structure to direct form

a,(m)=k,; a,(0)=1
a,(k)y=a, (k)+a, (m)a, (m—k)

Conversion from direct form to lattice structure
a, (0)=1 k,=a,(m)

a,(k)—a,(m)a,(m—k)

@1 (K) = 1—a’ (m)

Lattice — Ladder Structure

A general IIR filter containing both poles and zeros can be realized using an all pole
lattice as the basic building block.

S:g GETMYUNI
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If,
i "
b, (k)Z~
niz) 2D 5
N 1+ a,(k)z™*
k=1
Where N> M

A lattice structure can be constructed by first realizing an all-pole lattice co-efficients
k,, 1<m< N for the denominator Ax(Z), and then adding a ladder part for M=N. The

output of the ladder part can be expressed as a weighted linear combination of {gy(n)}.
Now the output is given by

M
Y =3.C,g,n
m=0
Where {C,,} are called the ladder co-efficient and can be obtained using the recursive

M
relation, C,, =b, — Y_C,a,(i—m); m=M, M-1, ....0

i=m+1

fn.1 ()

Problem:
Convert the following pole-zero IIR filter into a lattice ladder structure,
1+227' 4227 +27
1+8z 437724177
Solution:
Given b, (Z)=1+2Z"+227*+Z"
And A, (Z)=1+87"+3727+177
a;(0)=L a;()=3: a;)=3; a;3) =3

H(Z)=

S:g GETMYUNI
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ky=a;3)=3
Using the equation
a,(k)—a,(m)a, (m-k)

1—a’m(m)

a, (k)=

for m=3, k=1

a,(l) = a,(D—a;(3)ay(2) _ 5 —1-
2 1-a;(3) ()
for m=3, & k=2

0.2 =k, = B =a®a,0)
? g 1-a2(3)

[a—

-
for m=2, & k=1

)= = 2= 2ay(D)

for lattice structure k, =%, k, =4, k;=
For ladder structure
M
C,=b,— > C.a(-m) m=M, M-1,1,0
i=m+1
C,=b,=1; C,=b,-Csa,(1)
=2-1.(4)=1.4583

M=3

3
C =bl—2clal(i—m) m=1
i=2

=D, — c,a,(D) +cia,,,
=2-[(1.4583)2) + 2] = 0.8281

3
¢, =b, — 2c1a1(i —m)
i=1
= b, —[c,a,(1) + c,a,(2) + c;a,(3)]
=1-[08281(1) +1.4583(1) + 1] = —02695

To convert a lattice- ladder form into a direct form, we find an equation to obtain
ay (k) from k, (m=1,2,......... N) then equation for ¢, is recursively used to

computeb, (m=0,1,2,......... M).
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(n)
o g o) foln e
1/2 1/4
112 14
Z ! z'i 7 | |
1.4583 0.8281 y -0.2695
Y
- Y kf_ﬁyw
TN T i 8l

D 4
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