Chapter 15
Power Supplies
(Voltage Regulators)
Power Supply Diagram

Transformer → Rectifier → Filter → IC regulator → Load

120 V rms
Filter Circuits

- The output from the rectifier section is a pulsating DC.

- The filter circuit reduces the peak-to-peak pulses to a small ripple voltage.
After the filter circuit a small amount of AC is still remaining. The amount of ripple voltage can be rated in terms of ripple factor (\(r \)).

\[
\%r = \frac{\text{ripple voltage (rms)}}{\text{dc voltage}} = \frac{V_{r\text{rms}}}{V_{dc}} \times 100
\]
Rectifier Ripple Factor

Half-Wave

DC output:

\[V_{dc} = 0.318V_m \]

AC ripple output:

\[V_{r(rms)} = 0.385V_m \]

Ripple factor:

\[\%r = \frac{V_{r(rms)}}{V_{dc}} \times 100 \]

\[= \frac{0.385V_m}{0.318V_m} \times 100 = 121\% \]

Full-Wave

DC output:

\[V_{dc} = 0.636V_m \]

AC ripple output:

\[V_{r(rms)} = 0.308V_m \]

Ripple factor:

\[\%r = \frac{V_{r(rms)}}{V_{dc}} \times 100 \]

\[= \frac{0.308V_m}{0.636V_m} \times 100 = 48\% \]
Types of Filter Circuits

Capacitor Filter

RC Filter
Capacitor Filter

Ripple voltage

$$V_{r(rms)} = \frac{I_{dc}}{4\sqrt{3}fC} = \frac{2.4I_{dc}}{C} = \frac{2.4V_{dc}}{RLC}$$

The larger the capacitor the smaller the ripple voltage.

DC output

$$V_{dc} = V_m - \frac{I_{dc}}{4fC} = V_m - \frac{4.17I_{dc}}{C}$$

Ripple factor

$$\%r = \frac{V_{r(rms)}}{V_{dc}} \times 100 = \frac{2.4I_{dc}}{CV_{dc}} \times 100 = \frac{2.4}{RLC} \times 100$$
Diode Ratings with Capacitor Filter

The size of the capacitor increases the current drawn through the diodes—the larger the capacitance, the greater the amount of current.

Peak Current vs. Capacitance:

\[I = \frac{CV}{t} \]

where
- \(C \) = capacitance
- \(V \) = change in capacitor voltage during charge/discharge
- \(t \) = the charge/discharge time
RC Filter Circuit

Adding an RC section further reduces the ripple voltage and decrease the surge current through the diodes.

\[V_r'(\text{rms}) \approx \frac{X_C}{R} V_r(\text{rms}) \]

- \(V_r'(\text{rms}) \): ripple voltage after the RC filter
- \(V_r(\text{rms}) \): ripple voltage before the RC filter
- \(R \): resistor in the added RC filter
- \(X_C \): reactance of the capacitor in the added RC filter

\[\% V_R = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100\% \]

- \(V_{NL} \): no-load voltage
- \(V_{FL} \): full-load voltage
Voltage Regulation Circuits

There are two common types of circuitry for voltage regulation:

• Discrete Transistors
• IC’s
Discrete-Transistor Regulators

Series voltage regulator
Current-limiting circuit
Shunt voltage regulator
Series Voltage Regulator Circuit

The series element controls the amount of the input voltage that gets to the output.

If the output voltage increases (or decreases), the comparator circuit provides a control signal to cause the series control element to decrease (or increase) the amount of the output voltage.
Series Voltage Regulator Circuit

- R_1 and R_2 act as the sampling circuit
- Zener provides the reference voltage
- Q_2 controls the base current to Q_1
- Q_1 maintains the constant output voltage

When the output increases:

1. The voltage at V_2 and V_{BE} of Q_2 increases
2. The conduction of Q_2 increases
3. The conduction of Q_1 decreases
4. The output voltage decreases

When the output decreases:

1. The voltage at V_2 and V_{BE} of Q_2 decreases
2. The conduction of Q_2 decreases
3. The conduction of Q_1 increases
4. The output voltage increases
The op-amp compares the Zener diode voltage with the output voltage (at R_1 and R_2) and controls the conduction of Q_1.
When \(I_L \) increases:

- The voltage across \(R_{SC} \) increases
- The increasing voltage across \(R_{SC} \) drives \(Q_2 \) on
- Conduction of \(Q_2 \) reduces current for \(Q_1 \) and the load
Shunt Voltage Regulator Circuit

The shunt voltage regulator shunts current away from the load.

The load voltage is sampled and fed back to a comparator circuit. If the load voltage is too high, control circuitry shunts more current away from the load.
Shunt Voltage Regulator Circuit

When the output voltage increases:

- The Zener current increases
- The conduction of Q₂ increases
- The voltage drop at Rₛ increases
- The output voltage decreases

When the output voltage decreases:

- The Zener current decreases
- The conduction of Q₂ decreases
- The voltage drop at Rₛ decreases
- The output voltage increases
Shunt Voltage Regulator Circuit
IC Voltage Regulators

Regulator ICs contain:

- Comparator circuit
- Reference voltage
- Control circuitry
- Overload protection

Types of three-terminal IC voltage regulators

- Fixed positive voltage regulator
- Fixed negative voltage regulator
- Adjustable voltage regulator
Three-Terminal Voltage Regulators

The specifications for this IC indicate:

- The range of input voltages that can be regulated for a specific range of output voltage and load current
- Load regulation—variation in output voltage with variations in load current
- Line regulation—variation in output voltage with variations in input voltage
Fixed Positive Voltage Regulator

These ICs provide a fixed positive output voltage.
Fixed Negative Voltage Regulator

These ICs output a fixed negative output voltage.
Adjustable Voltage Regulator

These regulators have adjustable output voltages.

The output voltage is commonly selected using a potentiometer.
Practical Power Supplies

DC supply (linear power supplies)
Chopper supply (switching power supplies)
TV horizontal high voltage supply
Battery chargers