
Introduction to FPGA 1\16

�

1. The History of Programmable Logic

By the late 1970s, standard logic devices were all the rage, and printed circuit
boards were loaded with them. Then someone asked, “What if we gave designers
the ability to implement different interconnections in a bigger device?” This would
allow designers to integrate many standard logic devices into one part.

To offer the ultimate in design flexibility, Ron Cline from Signetics™ (which was later
purchased by Philips and then eventually Xilinx) came up with the idea of two
programmable planes. These two planes provided any combination of “AND” and
“OR” gates, as well as sharing of AND terms across multiple Ors.

This architecture was very flexible, but at the time wafer geometries of 10 µm made
the input-to-output delay (or propagation delay) high, which made the devices
relatively slow.

1.1 What is a CPLD?

1.1.1 Programmable Logic Array (PLA)

• Two programmable planes
• Any combination of ANDs/Ors
• Sharing of AND terms across multiple OR’s
• Highest logic density available to user
• High fuse count, slower than PALs

MMI (later purchased by AMD™) was enlisted as a
second source for the PLA array. After fabrication
issues, it was modified to become the programmable
array logic (PAL) architecture by fixing one of the
programmable planes.
This new architecture differed from that of the PLA in that one of the Programmable
planes was fixed – the OR array. PAL architecture a lso had the added benefit of
faster Time of Propagation Delay (Tpd) and less complex software, but without the
flexibility of the PLA structure.

Other architectures followed, such as the PLD. This category of devices is often
called Simple PLD.

Lecture (1)
Introduction to FPGA

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 2\16

�

1.1.2 Programmable Array Logic (PAL)

• One programmable plane – AND/Fixed OR
• Finite combination of ANDs/Ors
• Medium logic density available to user
• Lower fuse count, faster than PLAs (at this

time fabricated on a 10 um process)

The architecture had a mesh of horizontal and vertical interconnect tracks. At each
junction was a fuse. With the aid of software tools, designers could select which
junctions would not be connected by “blowing” all unwanted fuses. (This was done
by a device programmer, but more commonly these days is achieved with In System
Programming (ISP)).
Input pins were connected to the vertical interconnect. The horizontal tracks were
connected to AND-OR gates, also called “product terms”. These in turn connected to
dedicated flip-flops, whose outputs were connected to output pins.
PLDs provided as much as 50 times more gates in a single package than discrete
logic devices! This was a huge improvement, not to mention fewer devices needed in
inventory and a higher reliability over standard logic.
PLD technology has moved on from the early days with companies such as Xilinx
producing ultra-low-power CMOS devices based on flash memory technology. Flash
PLDs provide the ability to program the devices time and time again, electrically
programming and erasing the device. Gone are the days of erasing for more than 20
minutes under an UV eraser.

1.1.3 Complex Programmable Logic Devices (CPLDs)

Complex programmable logic devices (CPLDs) extend the density of SPLDs.
The concept is to have a few PLD blocks or macrocells on a single device with a
general-purpose interconnect in-between. Simple logic paths can be implemented
within a single block. More sophisticated logic requires multiple blocks and uses the
general-purpose interconnect in-between to make these connections.

1.1.3.1 CPLD Architecture

• Central, Global Interconnect
• Simple, Deterministic Timing
• Easily routed
• PLD Tools and only interconnect
• Wide, fast complex gating

Figure 1.2 Programmable
Array Logic (PAL)

Figure 1.3 Complex Programmable
Logic Device (CPLD)

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 3\16

�
CPLDs are great at handling wide and complex gating at blistering speeds – 5
nanoseconds, for example, which is equivalent to 200 MHz.
The timing model for CPLDs is easy to calculate so before starting your design you
can calculate your input-to-output speeds.

1.2 Why use a CPLD?

CPLDs enable ease of design, lower development costs, and more product revenue
for your money, and the opportunity to speed your products to market.

1.2.1 Ease of Design: CPLDs offer the simplest way to implement a design. Once a
design has been described, by schematic and/or HDL entry, you simply use CPLD
development tools to optimize, fit, and simulate the design.
The development tools create a file that is used to customize (that is, program) a
standard off-the-shelf CPLD with the desired functionality. This pro- vides an instant
hardware prototype and allows the debugging process to begin.
If modifications are needed, you can enter design changes into the CPLD
development tool, and re-implement and test the design immediately.

1.2.2 Lower Development Costs: CPLDs offer very low development costs.
Because CPLDs are re-programmable, you can easily and very inexpensively
change your designs. This allows you to optimize your designs and continue to add
new features to enhance your products.
CPLD development tools are relatively inexpensive (or in the case of Xilinx, free).
Traditionally, designers have had to face large cost penalties such as rework, scrap,
and development time. With CPLDs, you have flexible solutions, thus avoiding many
traditional design pitfalls.

1.2.3 More Product Revenue: CPLDs offer very short development cycles, which
means your products get to market quicker and begin generating revenue sooner.
Because CPLDs are re-programmable, products can be easily modified using ISP
over the Internet. This in turn allows you to easily introduce additional features and
quickly generate new revenue. (This also results in an expanded time for revenue).
Thousands of designers are already using CPLDs to get to market quicker and stay
in the market longer by continuing to enhance their products even after they have
been introduced into the field. CPLDs decrease TTM and extend TIM.

1.2.4 Reduced Board Area: CPLDs offer a high level of integration (that is, a large
number of system gates per area) and are available in very small form factor
packages.
This provides the perfect solution for designers whose products which must fit into
small enclosures or who have a limited amount of circuit board space to implement
the logic design.

1.2.5 Cost of Ownership: Cost of Ownership can be defined as the amount it costs
to maintain, fix, or warranty a product.
For instance, if a design change requiring hardware rework must be made to a few
prototypes, the cost might be relatively small. However, as the number of units that
must be changed increases, the cost can become enormous.

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 4\16

�
Because CPLDs are re-programmable, requiring no hardware rework, it costs much
less to make changes to designs implemented using them. Therefore cost of
ownership is dramatically reduced.

Don’t forget that the ease or difficulty of design changes can also affect opportunity
costs. Engineers who spend time fixing old designs could be working on introducing
new products and features ahead of the competition.

There are also costs associated with inventory and reliability. PLDs can reduce
inventory costs by replacing standard discrete logic devices. Standard logic has a
predefined function. In a typical design, lots of different types have to be purchased
and stocked. If the design is changed, there may be excess stock of superfluous
devices. This issue can be alleviated by using PLDs. You only need to stock one
device; if your design changes, you simply reprogram. By utilizing one device instead
of many, your board reliability will increase by only picking and placing one device
instead of many.

Reliability can a lso be increased by using ultra-low-power CoolRunner CPLDs. Their
lower heat dissipation and lower power operation leads to decreased FIT.

1.3 Field Programmable Gate Arrays (FPGAs)

In 1985, a company called Xilinx introduced a completely new idea: combine the
user control and time to market of PLDs with the densities and cost benefits of gate
arrays. Customers liked it – and the FPGA was born. Today Xilinx is still the number-
one FPGA vendor in the world.

An FPGA is a regular structure of logic cells (or modules) and interconnect, which is
under your complete control. This means that you can design, program, and make
changes to your circuit whenever you wish.

With FPGAs now exceeding the 10 million gate limit (the Xilinx Virtex™-II FPGA is
the current record holder), you can really dream big.

1.3.1 FPGA Architecture

• Channel Based Routing
• Post Layout Timing
• Tools More Complex than CPLDs
• Fine Grained
• Fast register pipelining

Figure 1.4 Field Programmable Gate
Array Logic (FPGA)

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 5\16

�
There are two basic types of FPGAs: SRAM-based reprogrammable (Multi-time
Programmed MTP) and (One Time Programmed) OTP. These two types of FPGAs
differ in the implementation of the logic cell and the mechanism used to make
connections in the device.

The dominant type of FPGA is SRAM-based and can be reprogrammed as often as
you choose. In fact, an SRAM FPGA is reprogrammed every time it’s powered up,
because the FPGA is really a fancy memory chip. That’s why you need a serial
PROM or system memory with every SRAM FPGA.

Figure 1.5 Types of FPGA

In the SRAM logic cell, instead of conventional gates, an LUT determines the output
based on the values of the inputs. (In the “SRAM logic cell” diagram above, six
different combinations of the four inputs determine the values of the output.) SRAM
bits are also used to make connections.

OTP FPGAs use anti-fuses (contrary to fuses, connections are made, not “blown,”
during programming) to make permanent connections in the chip. Thus, OTP FPGAs
do not require SPROM or other means to download the program to the FPGA.
However, every time you make a design change, you must throw away the chip! The
OTP logic cell is very similar to PLDs, with dedicated gates and flip-flops.

Table 1.1: Comparison between OTP FPGA and MTP FPGA

Property OTP FPGA MTP FPGA

Speed Higher (current flows in wire) Lower (current flows in
transistors)

Size smaller Larger
Power Consumption Lower Higher
Working Environment

(Radiation)
Radiation hardened NO radiation hardened

Design Cycle Programmed once only Many times
Price Almost the same Almost the same

Reliability More (single Chip) Less (2 Chips, FPGA &
PROM)

Security More secure Less secure

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 6\16

�
2. ASIC & FPGA Devices

Standard “off-the-shelf” integrated circuits have a mixed functional operation defined
by the chip manufacturer. Contrary to this, both FPGAs & ASIC are types of
integrated circuits whose function is not fixed by the manufacturer. The function is
defined by the designer for a particular application. An ASIC requires a final
manufacturing process to customize its operation while an FPGA does not.

2.1 ASICs

An Application Specific Integrated Circuit is a device that is partially manufactured by
an ASIC vendor in generic form. This initial manufacturing process is the most
complex, time consuming and expensive part of the total manufacturing process.
The result is silicon chips with an array of unconnected transistors.

The final manufacturing process of connecting the transistors together is then
completed when a chip designer has a specific design he or she wishes to
implement in the ASIC. An ASIC vendor can usually do this in a couple of weeks and
is known as the turn-round time. There are two categories of ASIC devices: Gate
Array and standard cells.

2.1.1 Gate Array

There are two types of gate array: a channeled gate array and a channel-less gate
array. A channeled gate array is manufactured with single or double rows of basic
cells across the silicon. A basic cell consists of numbers of transistors. The channels
between the rows of cells are used for interconnecting the basic cells during the final
customization process. A channel-less gate array is manufactured with a “sea” of
basic cells across the silicon and there are no dedicated channels for
interconnections.
The library of cells provided by a gate array vendor will contain: primitive logic gates,
registers, hard-macros, soft-macros. Hard-macros and soft-macros are usually of
MSI and LSI complexity such as multiplexers, comparators and counters. Hard-
macros are defined by the manufacturer while soft-macros are defined by the
designer (e.g. specifying the width of a particular counter).

2.1.2 Standard Cells

Standard cell devices do not have the concept of a basic cell and no components are
prefabricated on the silicon chip. The manufacturer creates custom masks for every
stage of the device’s process and means silicon is utilized much more efficiently than
for gate arrays.
Manufacturer supplies hard-macro and soft-macro libraries containing elements of
LSI and VLSI complexity, such as controllers, ALUs and microprocessors.
Additionally, soft-macro libraries contain RAM functions that cannot be implemented
efficiently in gate array devices; ROM functions are more efficiently implemented in
cell primitives.

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 7\16

�
2.2 FPGAs

The Field Programmable Gate Array is a device that is completely manufactured, but
that remains design independent. Each FPGA vendor manufactures devices to a
proprietary architecture. However the architecture will include a number of
programmable logic blocks that are connected to programmable switching matrices.
To configure a device to a particular functional operation these switching matrices
are programmed to route signals between the individual logic blocks.

Table 1.2: Comparison between FPGAs and ASICs

Property FPGAs ASICs
Digital and Analog

Capability
Digital Only Digital and Analog

Size Larger More Smaller
Operating Frequency Lower (up to 400 MHz) Higher (up to 3 GHz)
Power Consumption Higher Lower

Design Cycle Very Small (few mins) Very Long (about 12 wks)

Mass Production Higher Price Lower Price (more
suitable)

Security More Secure Not Secure

3. The Internal Structure of FPGA

A typical FPGA is composed of three major components: logic modules, routing
resources, and input/output (I/O modules) Figure 1.8 depicts the conceptual FPGA
model. In an FPGA, an array of logic modules is surrounded or overlapped by
general routing resources bounded by I/O modules. The logic modules contain
combinationa l and sequential circuits that implement logic functions. The routing
resources comprise pre-fabricated wire segments and programmable switches. The
interconnections between the logic modules and the I/O modules are user-
programmable.

Figure 1.6 Silicon Wafer containing
10,000 gate FPGAs

Figure 1.7 Single FPGA Die

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 8\16

�

Figure 1.8: A typical FPGA architecture with three major components: logic

modules, routing resources, and I/O modules.

A logic circuit is implemented in an FPGA by partitioning logic into individual logic
modules and then interconnecting the modules by programming switches. A large
circuit that cannot be accommodated into a single FPGA is divided into several parts
each part is realized by an FPGA and these FPGAs are then interconnected by a
Field-Programmable Interconnect Component (FPIC) (see Figure 1.9).

Figure 1.9: An FPIC Architecture

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 9\16

�
3.1 Programming Technologies

3.1.1 SRAM Programming Technology

The SRAM programming technology employs SRAM cells to control pass transistors
or multiplexers as shown in Figures 1.10a and 1.10b. For the pass-transistor element
in Figure 1.10a, the state of the SRAM cell controls the ON and OFF of the transistor
(switch). When ON, the pass transistor exhibits a relatively low resistance (< 2k Ω)
between the two adjacent routing wires, and thus the switch is closed; when OFF,
the switch is open and the transistor incurs a very high resistance between the two
routing wires. For the multiplexer approach in Figure 1.10b, the states of the SRAM
cells serve as select signals and control the choice of the multiplexer’s inputs.

Figure 1.10: The SRAM Programming Technology.

 (a) A pass-transistor switch. (b) A multiplexer switch

SRAM programming technology has the following major advantages: simple
manufacturing, low, fast in-circuit reprogrammability, and low power consumption.
However, a major disadvantage of SRAM programming technology is its large
physical size.
One interesting property of SRAM is its volatility - a configuration is lost when its
power is off. On one hand, this implies a system overhead that external permanent
memory such as a Read-Only Memory (ROM). Programmable Read - Only Memory
(PROM) or a disk is needed to store and provide programming configurations. On
the other hand_ volatility gives SRAM-based FPGAs better design security because
a design configuration is lost when power is removed.

Figure 1.11: SRAM-Controlled Programmable Switch

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 10\16

�
3.1.2 Anti-fuse Programming Technology

An anti-fuse is a two-terminal, one-time programmable circuit element with high
resistance (> 100 MΩ) between its terminals in the unprogrammed state and low
resistance (= 500 Ω) in the programmed state.
Programming is performed by applying a higher-than-operating voltage (say, 18 V)
across the anti-fuse’s terminals, causing the dielectric breakdown and drastically
reducing the device resistance.

Figure 1.12: The Anti-fuse Programming Technology

(a) The ONO anti-fuse structure (b) The amorphous anti-fuse structure

Two major advantages of the anti-fuse are its small size and relatively low ON
resistance and OFF capacitance; for example, the size of an amorphous anti-fuse is
approximately 1 µm2 in a 0.65 micron process. These advantages allow a much
denser switch population and thus could alleviate the routing constraints imposed by
the limited connectivity of routing resources. However, anti-fuse programming
technology has the following major disadvantages: relatively complex manufacturing
process and non-reprogrammability.

3.1.3 EPROM and EEPROM Programming Technology

An ultraviolet (UV)-erasable PROM (EPROM) is typically based on a floating gate
structure as illustrated in Figure (1.13). If sufficient charge is trapped on the floating
gate by applying higher-than-operating voltages between the control gate (13-14 V)
and the drain of the transistor (12 V), the floating gate becomes charged negatively.
The process increases the threshold voltage of the transistor to around 7 V, setting
the transistor to the OFF state for all normal circuit voltages, maximally 5-6 V. The
process can be reversed out-of-circuit by exposing the floating gate to UV light,
giving the trapped charge sufficient energy to escape from the gate dielectric; this
process reduces the threshold voltage and makes the transistor function normally.

The Electrically Erasable PROM (EEPROM) programming technology typically uses
two transistors, one access and one programmed transistors, in a ROM cell. The
programmed transistor performs the same function as the floating gate in an
EPROM, with both charge and discharge being done electrically in-circuit without UV
light, The access transistor allows programming of a cell.

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 11\16

�

Figure 1.13: The EPROM Programming Technology

(a) UV-erasable EPROM Structure (b) Circuit Symbol for a floating-gate EPROM

The major advantages of EPROM and EEPROM technologies are their
reprogrammability and full testability before shipment, especially for EEPROM. Also,
unlike the SRAM technology, EPROM or EEPROM requires no external permanent
memory to program the chip at power-up. However, the EPROM, EEPROM
technology suffers from some drawbacks such as relatively high ON-resistance, high
static power consumption, and complicated manufacturing processes

Table 1.3: Comparison of Programming Technologies

Programming
Technology SRAM

ONTO Anti -
fuse

Amorphous
Anti-fuse EPROM EEPROM

Manufacturing complexity +++ + + - --

Reprogrammable? Yes
In Circuit

No No Yes
Out of Circuit

Yes
In Circuit

Physical Size Large (20X) Small (2X) Small (1X) Large (40X) Large (80X)
ON Resistance (O) 600-800 100-500 30-80 1-4 K 1-4 K
OFF Resistance (O) 10-50 3-5 1 10-50 10-50
Power Consumption ++ + + - -

Volatile? Yes No No No No

3.2 Logic Module Architecture

A logic circuit is implemented in a CPLD/FPGA by partitioning logic into individual
logic modules and then interconnecting the modules by programming switches. A
logic module has a fixed number of inputs and outputs. Certain set of functions can
be implemented using a logic module_ depending on the functionality of the module.
The logic modules of a high-capacity commercial programmable device are typically
based on lookup tables, multiplexers, transistor pairs, basic logic gates, or SPLDs,
with the first four types being popular in FPGAs and the last in CPLDs. We detail
lookup table, and multiplexer-based logic modules in the following.

3.2.1 Lookup Table-based Logic Modules

A lookup table (LUT) based logic module is a segment of SRAM. The programming
data defining the logic configuration are loaded into the SRAM at power-up. A K-
input LUT is a 2K × 1 SRAM with K address lines served as inputs and the 1-bit
SRAM output as the LUT output. For example, if the function f = ab + a!c needs to be
implemented using a 3-input LUT, then the truth table shown in Figure 1.14(a) is

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 12\16

�
loaded into the LUT, and thus the 23 × 1 SRAM would have a 0 stored at address
000, a 1 at 001, etc_ as given in the truth table.

a B c F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

(a) (b)

Figure 1.14: Look-up Table Logic (a) Truth Table (b) An 8 × 1 SRAM

The main advantage of LUTs lies in their high functionality, a K-input LUT can realize
any function of up to K inputs and there are 2 ^ 2k such functions. However, the
LUTs are only feasible for small values of K because 2K memory cells are required
for a K-input LUT with only combinational logic; typically, the value of K is 3, 4, 5
or 6. Further, the value of K may be even smaller in order to implement multi-output
or sequential logic.

3.2.2 Multiplexer-based Logic Modules

A multiplexer-based logic module is typically composed of a tree of 2-to-1
multiplexers. For example, the Actel ACT 3 C-Module, shown in Figure (1.15)
consists of three 2-to-1 multiplexers.
The inputs to the logic module are either data inputs d0, d1, d2, d3 or the multiplexer
select inputs s0, s1, s2, s3. Therefore, the logic module can be used to implement a
wide range of different functions of up to eight variables, (specifically, 766 functions
for the logic module); for example_ the function f = ab + a!c can be realized by
setting d0 =1 x, d1 = x, d2 = c, d4 = b, s0 = a, s1 = 1, s2 = 1 and s3 = x, where x means
don’t-care. Also flip-flops can be incorporated into the multiplexer-based logic
module to implement sequential logic.

Figure 1.15: Multiplexer-based Logic Module

8 × 1
MUX

a
b
c

f

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 13\16

�

Figure 1.16: FPGA Configurable Logic Block

3.3 Routing Architecture

The interconnect architecture of a CPLD/FPGA includes routing resources and their
interconnection topology on the CPLD/FPGA. CPLD/FPGA routing resources consist
of pre-fabricated wire segments and programmable switches; routing in a
CPLD/FPGA is performed by programming the switches to connect the wire
segments. There are four major interconnection topologies for commercial
CPLDs/FPGAs: array-based, row-based, sea-of-gates, and hierarchical models.

An array-based FPGA consists of a two-dimensional array of logic modules which
can be connected by general routing resources (See Figure 1.17a). As mentioned
earlier, the logic modules house circuits that implement logic functions. The routing
resources comprise horizontal and vertical routing tracks and user-programmable
switches.
A row-based CPLD/FPGA consists of multiple rows of logic modules (See Figure
1.17b). Routing wires run in the channels between two adjacent rows and also inside
the channels vertically. There are additional global vertical wires providing
connections among different rows (not shown in Figure 1.17b).
Unlike the array- and row-based architectures where there are routing channels
separating logic modules, all logic modules in a sea-of-gates structure directly abut
(See Figure 1.17c). The close proximity of logic modules allows direct connections
between adjacent modules, significantly improving circuit performance. A routing
network runs over the top of the modules, enabling efficient use of the available
chip area.
The hierarchical structure is composed of logic modules connected by multiple levels
of interconnect (See Figure 1.17d). At the first hierarchical level, several logic
modules form a group, and local routing resources for the modules are provided.
Together, the logic modules and their interconnect form a local component. Again,
the second level of interconnect ties together a group of the components of the first
level, with shared routing resources for the components. The construction for higher
levels of components proceeds in the same manner.

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 14\16

�

Figure 1.17: The four major CPLD/FPGA architectures
(a) The array-based model (b) The row-based model
(c) The sea-of-gates model (d) The hierarchal model

3.4 Logic Gates implementation with multiplexers

The basic building block of any combinational circuit in FPGA is the multiplexer.
Using one multiplexer, we can implement all the combinational circuits. The following
figure shows how AND, OR and NOT gates are implemented inside an FPGA.
Of course, any other combinational circuit can be represented in a SOP form and
hence will be a combination of multiplexers with appropriate connections.

if a = 0 ⇒ Output = 0
if a = 1 ⇒ Output = b

if a = 0 ⇒ Output = b
if a = 1 ⇒ Output = 1

if a = 0 ⇒ Output = 1
if a = 1 ⇒ Output = 0

Figure 1.18: Logic Gate Implementation with multiplexers

a

b

a

b

a

a a! a
b

c
a
b

c

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 15\16

�
4. Top-Down Design Methodology

FPGA Design Steps

1. Read customer specs.
2. Translate these specs into engineering specs.
3. Design a complete architecture for your design.
4. Design a test structure.
5. Design the data entry (Block-diagrams, HDL files, state-machines, ... etc)
6. Functional simulation
7. Choose the vendor, family, device and speed grade of the FPGA chip.
8. Run the synthesizer (Xilinix Synthesis Technology, Leonardo-Spectrum tool)
9. Place and Route.
10. Extract Delays (Standard Delay Format (SDF) files).
11. Post Layout Timing simulation (*.hdl & *.sdf files simulation).
12. Critical Path reduction (Pipelined processing or Parallel processing).
13. Download the design on the target chip.
14. Hardware testing.

www.getmyuni.com

FPGA Short Course

Introduction to FPGA 16\16

�
5. Applications of FPGAs

FPGAs have gained rapid acceptance and growth over the past decade because
they can be applied to a very wide range of applications. A list of typical applications
includes: random logic, integrating multiple SPLDs, device controllers,
communication encoding and filtering, small to medium sized systems with SRAM
blocks, and many more.

Other interesting applications of FPGAs are prototyping of designs later to be
implemented in gate arrays, and also emulation of entire large hardware systems.
The former of these applications might be possible using only a single large FPGA
(which corresponds to a small Gate Array in terms of capacity), and the latter would
entail many FPGAs connected by some sort of interconnect; for emulation of
hardware, QuickTurn [Wolff90] (and others) has developed products that comprise
many FPGAs and the necessary software to partition and map circuits.

Another promising area for FPGA application, which is only beginning to be
developed, is the usage of FPGAs as custom computing machines. This involves
using the programmable parts to “execute” software, rather than compiling the
software for execution on a regular CPU. The reader is referred to the FPGA-Based
Custom Computing W orkshop (FCCM) held for the last four years and published by
the IEEE.

When designs are mapped into CPLDs, pieces of the design often map naturally to
the SPLD-like blocks. However, designs mapped into an FPGA are broken up into
logic block-sized pieces and distributed through an area of the FPGA. Depending on
the FPGA’s interconnect structure, there may be various delays associated with the
interconnections between these logic blocks. Thus, FPGA performance often
depends more upon how CAD tools map circuits into the chip than is the case for
CPLDs.

We believe that over time programmable logic will become the dominant form of
digital logic design and implementation. Their ease of access, principally through the
low cost of the devices, makes them attractive to small firms and small parts of large
companies. The fast manufacturing turn-around they provide is an essential element
of success in the market. As architecture and CAD tools improve, the disadvantages
of FPDs compared to Mask-Programmed Gate Arrays will lessen, and
programmable devices will dominate.

www.getmyuni.com

