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1. The History of Programmable Logic 
 
By the late 1970s, standard logic devices were all the rage, and printed circuit 
boards were loaded with them. Then someone asked, “What if we gave  designers 
the ability to implement different interconnections in a bigger device?” This would 
allow designers to integrate many standard logic devices into one part. 
 
To offer the ultimate in design flexibility, Ron Cline from Signetics™ (which was later 
purchased by Philips and then eventually Xilinx) came up with the idea of two 
programmable planes. These two planes provided any combination of “AND” and 
“OR” gates, as well as sharing of AND terms across multiple  Ors. 
 
This architecture was very flexible, but at the time wafer geometries of 10 µm made 
the input-to-output delay (or propagation delay) high, which made the devices 
relatively slow. 
 
1.1 What is a CPLD? 
 
1.1.1 Programmable Logic Array (PLA)  
 

• Two programmable planes 
• Any combination of ANDs/Ors 
• Sharing of AND terms across multiple OR’s 
• Highest logic density available to user 
• High fuse count, slower than PALs 

 
MMI (later purchased by AMD™) was enlisted as a 
second source for the PLA array. After fabrication 
issues, it was modified to become the programmable 
array logic (PAL) architecture by fixing one of the 
programmable planes. 
This new architecture differed from that of the PLA in that one of the Programmable 
planes was fixed – the OR array. PAL architecture a lso had the added benefit of 
faster Time of Propagation Delay (Tpd) and less complex software, but without the 
flexibility of the PLA structure. 
 
Other architectures followed, such as the PLD. This category of devices is often 
called Simple PLD. 

Lecture (1) 
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1.1.2 Programmable Array Logic (PAL) 
 

• One programmable plane – AND/Fixed OR  
• Finite combination of ANDs/Ors 
• Medium logic density available to user 
• Lower fuse count, faster than PLAs (at this 

time fabricated on a 10 um process) 
 
 
 
 
The architecture had a mesh of horizontal and vertical interconnect tracks. At each 
junction was a fuse. With the aid of software tools, designers could select which 
junctions would not be connected by “blowing” all unwanted fuses. (This was done 
by a device programmer, but more commonly these days is achieved with In System 
Programming (ISP)). 
Input pins were connected to the vertical interconnect. The horizontal tracks were 
connected to AND-OR gates, also called “product terms”. These in turn connected to 
dedicated flip-flops, whose outputs were connected to output pins. 
PLDs provided as much as 50 times more gates in a single package than discrete 
logic devices! This was a huge improvement, not to mention fewer devices needed in 
inventory and a higher reliability over standard logic. 
PLD technology has moved on from the early days with companies such as Xilinx 
producing ultra-low-power CMOS devices based on flash memory technology. Flash 
PLDs provide the ability to program the devices time and time again, electrically 
programming and erasing the device. Gone are the days of erasing for more than 20 
minutes under an UV eraser. 
 
1.1.3 Complex Programmable Logic Devices (CPLDs) 
 
Complex programmable logic devices (CPLDs) extend the density of SPLDs. 
The concept is to have a few PLD blocks or macrocells on a single device with a 
general-purpose interconnect in-between. Simple logic paths can be implemented 
within a single block. More sophisticated logic requires multiple blocks and uses the 
general-purpose interconnect in-between to make these connections. 
 
1.1.3.1 CPLD Architecture 
 

• Central, Global Interconnect 
• Simple, Deterministic Timing 
• Easily routed 
• PLD Tools and only interconnect 
• Wide, fast complex gating 

 
 
 
 

Figure 1.2 Programmable 
Array Logic (PAL) 

Figure 1.3 Complex Programmable 
Logic Device (CPLD) 
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CPLDs are great at handling wide and complex gating at blistering speeds – 5 
nanoseconds, for example, which is equivalent to 200 MHz. 
The timing model for CPLDs is easy to calculate so before starting your design you 
can calculate your input-to-output speeds. 
 
1.2 Why use a CPLD? 
 
CPLDs enable ease of design, lower development costs, and more product revenue 
for your money, and the opportunity to speed your products to market. 
 
1.2.1 Ease of Design: CPLDs offer the simplest way to implement a design. Once a 
design has been described, by schematic and/or HDL entry, you simply use CPLD 
development tools to optimize, fit, and simulate the design. 
The development tools create a file that is used to customize (that is, program) a 
standard off-the-shelf CPLD with the desired functionality. This pro- vides an instant 
hardware prototype and allows the debugging process to begin. 
If modifications are needed, you can enter design changes into the CPLD 
development tool, and re-implement and test the design immediately. 
 
1.2.2 Lower Development Costs: CPLDs offer very low development costs. 
Because CPLDs are re-programmable, you can easily and very inexpensively 
change your designs. This allows you to optimize your designs and continue to add 
new features to enhance your products. 
CPLD development tools are relatively inexpensive (or in the case of Xilinx, free). 
Traditionally, designers have had to face large cost penalties such as rework, scrap, 
and development time. With CPLDs, you have flexible solutions, thus avoiding many 
traditional design pitfalls. 
 
1.2.3 More Product Revenue: CPLDs offer very short development cycles, which 
means your products get to market quicker and begin generating revenue sooner. 
Because CPLDs are re-programmable, products can be easily modified using ISP 
over the Internet. This in turn allows you to easily introduce additional features and 
quickly generate new revenue. (This also results in an expanded time for revenue). 
Thousands of designers are already using CPLDs to get to market quicker and stay 
in the market longer by continuing to enhance their products even after they have 
been introduced into the field. CPLDs decrease TTM and extend TIM. 
 
1.2.4 Reduced Board Area: CPLDs offer a high level of integration (that is, a large 
number of system gates per area) and are available in very small form factor 
packages. 
This provides the perfect solution for designers whose products which must fit into 
small enclosures or who have a limited amount of circuit board space to implement 
the logic design. 
 
1.2.5 Cost of Ownership: Cost of Ownership can be defined as the amount it costs 
to maintain, fix, or warranty a product. 
For instance, if a design change requiring hardware rework must be made to a few 
prototypes, the cost might be relatively small. However, as the number of units that 
must be changed increases, the cost can become enormous. 
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Because CPLDs are re-programmable, requiring no hardware rework, it costs much 
less to make changes to designs implemented using them. Therefore cost of 
ownership is dramatically reduced. 
 
Don’t forget that the ease or difficulty of design changes can also affect opportunity 
costs. Engineers who spend time fixing old designs could be working on introducing 
new products and features ahead of the competition. 
 
There are also costs associated with inventory and reliability. PLDs can reduce 
inventory costs by replacing standard discrete logic devices. Standard logic has a 
predefined function. In a typical design, lots of different types have to be purchased 
and stocked. If the design is changed, there may be excess stock of superfluous 
devices. This issue can be alleviated by using PLDs. You only need to stock one 
device; if your design changes, you simply reprogram. By utilizing one device instead 
of many, your board reliability will increase by only picking and placing one device 
instead of many. 
 
Reliability can a lso be increased by using ultra-low-power CoolRunner CPLDs. Their 
lower heat dissipation and lower power operation leads to decreased FIT. 
 
1.3 Field Programmable Gate Arrays (FPGAs) 
 
In 1985, a company called Xilinx introduced a completely new idea: combine the 
user control and time to market of PLDs with the densities and cost benefits of gate 
arrays. Customers liked it – and the FPGA was born. Today Xilinx is still the number-
one FPGA vendor in the world. 
 
An FPGA is a regular structure of logic cells (or modules) and interconnect, which is 
under your complete control. This means that you can design, program, and make 
changes to your circuit whenever you wish. 
 
With FPGAs now exceeding the 10 million gate limit (the Xilinx Virtex™-II FPGA is 
the current record holder), you can really dream big. 
 
1.3.1 FPGA Architecture 
 

• Channel Based Routing  
• Post Layout Timing 
• Tools More Complex than CPLDs 
• Fine Grained 
• Fast register pipelining 

 
 
 
 
 
 
 

Figure 1.4 Field Programmable Gate 
Array Logic (FPGA) 
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There are two basic types of FPGAs: SRAM-based reprogrammable (Multi-time 
Programmed MTP) and (One Time Programmed) OTP. These two types of FPGAs 
differ in the implementation of the logic cell and the mechanism used to make 
connections in the device. 
 
The dominant type of FPGA is SRAM-based and can be reprogrammed as often as 
you choose. In fact, an SRAM FPGA is reprogrammed every time it’s powered up, 
because the FPGA is really a fancy memory chip. That’s why you need a serial 
PROM or system memory with every SRAM FPGA. 
 

 
Figure 1.5 Types of FPGA 

 
In the SRAM logic cell, instead of conventional gates, an LUT determines the output 
based on the values of the inputs. (In the “SRAM logic cell” diagram above, six 
different combinations of the four inputs determine the values of the output.) SRAM 
bits are also used to make connections. 
 
OTP FPGAs use anti-fuses (contrary to fuses, connections are made, not “blown,” 
during programming) to make permanent connections in the chip. Thus, OTP FPGAs 
do not require SPROM or other means to download the program to the FPGA. 
However, every time you make a design change, you must throw away the chip! The 
OTP logic cell is very similar to PLDs, with dedicated gates and flip-flops. 
 
Table 1.1: Comparison between OTP FPGA and MTP FPGA 

Property OTP FPGA MTP FPGA 

Speed Higher (current flows in wire) Lower (current flows in 
transistors) 

Size smaller Larger 
Power Consumption Lower Higher 
Working Environment 

(Radiation) 
Radiation hardened NO radiation hardened 

Design Cycle Programmed once only Many times 
Price Almost the same Almost the same 

Reliability More (single Chip) Less (2 Chips, FPGA & 
PROM) 

Security More secure Less secure 
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2. ASIC & FPGA Devices 

 
Standard “off-the-shelf” integrated circuits have a mixed functional operation defined 
by the chip manufacturer. Contrary to this, both FPGAs & ASIC are types of 
integrated circuits whose function is not fixed by the manufacturer. The function is 
defined by the designer for a particular application. An ASIC requires a final 
manufacturing process to customize its operation while an FPGA does not. 
 
2.1 ASICs 
 
An Application Specific Integrated Circuit is a device that is partially manufactured by 
an ASIC vendor in generic form. This initial manufacturing process is the most 
complex, time consuming and expensive part of the total manufacturing process. 
The result is silicon chips with an array of unconnected transistors. 
 
The final manufacturing process of connecting the transistors together is then 
completed when a chip designer has a specific design he or she wishes to 
implement in the ASIC. An ASIC vendor can usually do this in a couple of weeks and 
is known as the turn-round time. There are two categories of ASIC devices: Gate 
Array and standard cells. 
 
2.1.1 Gate Array 
 
There are two types of gate array: a channeled gate array and a channel-less gate 
array. A channeled gate array is manufactured with single or double rows of basic 
cells across the silicon. A basic cell consists of numbers of transistors. The channels 
between the rows of cells are used for interconnecting the basic cells during the final 
customization process. A channel-less gate array is manufactured with a “sea” of 
basic cells across the silicon and there are no dedicated channels for 
interconnections. 
The library of cells provided by a gate array vendor will contain: primitive logic gates, 
registers, hard-macros, soft-macros. Hard-macros and soft-macros are usually of 
MSI and LSI complexity such as multiplexers, comparators and counters. Hard-
macros are defined by the manufacturer while soft-macros are defined by the 
designer (e.g. specifying the width of a particular counter). 
 
2.1.2 Standard Cells 
 
Standard cell devices do not have the concept of a basic cell and no components are 
prefabricated on the silicon chip. The manufacturer creates custom masks for every 
stage of the device’s process and means silicon is utilized much more efficiently than 
for gate arrays. 
Manufacturer supplies hard-macro and soft-macro libraries containing elements of 
LSI and VLSI complexity, such as controllers, ALUs and microprocessors. 
Additionally, soft-macro libraries contain RAM functions that cannot be implemented 
efficiently in gate array devices; ROM functions are more efficiently implemented in 
cell primitives. 
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2.2 FPGAs 
 
The Field Programmable Gate Array is a device that is completely manufactured, but 
that remains design independent. Each FPGA vendor manufactures devices to a 
proprietary architecture. However the architecture will include a number of 
programmable logic blocks that are connected to programmable switching matrices. 
To configure a device to a particular functional operation these switching matrices 
are programmed to route signals between the individual logic blocks. 
 

      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.2: Comparison between FPGAs and ASICs 

Property FPGAs ASICs 
Digital and Analog 

Capability 
Digital Only Digital and Analog 

Size Larger More Smaller 
Operating Frequency Lower (up to 400 MHz) Higher (up to 3 GHz) 
Power Consumption Higher Lower 

Design Cycle Very Small (few mins) Very Long (about 12 wks) 

Mass Production Higher Price Lower Price (more 
suitable) 

Security More Secure Not Secure 
 

3. The Internal Structure of FPGA 
 
A typical FPGA is composed of three major components: logic modules, routing 
resources, and input/output (I/O modules) Figure 1.8 depicts the conceptual FPGA 
model. In an FPGA, an array of logic modules is surrounded or overlapped by 
general routing resources bounded by I/O modules. The logic modules contain 
combinationa l and sequential circuits that implement logic functions. The routing 
resources comprise pre-fabricated wire segments and programmable switches. The 
interconnections between the logic modules and the I/O modules are user-
programmable.  

Figure 1.6 Silicon Wafer containing 
10,000 gate FPGAs 

Figure 1.7 Single FPGA Die 
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Figure 1.8: A typical FPGA architecture with three major components: logic 

modules, routing resources, and I/O modules. 
 
A logic circuit is implemented in an FPGA by partitioning logic into individual logic 
modules and then interconnecting the modules by programming switches. A large 
circuit that cannot be accommodated into a single FPGA is divided into several parts 
each part is realized by an FPGA and these FPGAs are then interconnected by a 
Field-Programmable Interconnect Component (FPIC) (see Figure 1.9). 
 

 
Figure 1.9: An FPIC Architecture 
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3.1 Programming Technologies 
 
3.1.1 SRAM Programming Technology 
 
The SRAM programming technology employs SRAM cells to control pass transistors 
or multiplexers as shown in Figures 1.10a and 1.10b. For the pass-transistor element 
in Figure 1.10a, the state of the SRAM cell controls the ON and OFF of the transistor 
(switch). When ON, the pass transistor exhibits a relatively low resistance (< 2k Ω) 
between the two adjacent routing wires, and thus the switch is closed; when OFF, 
the switch is open and the transistor incurs a very high resistance between the two 
routing wires. For the multiplexer approach in Figure 1.10b, the states of the SRAM 
cells serve as select signals and control the choice of the multiplexer’s inputs. 

    
Figure 1.10: The SRAM Programming Technology. 

 (a) A pass-transistor switch. (b) A multiplexer switch 
 
SRAM programming technology has the following major advantages: simple 
manufacturing, low, fast in-circuit reprogrammability, and low power consumption. 
However, a major disadvantage of SRAM programming technology is its large 
physical size. 
One interesting property of SRAM is its volatility - a configuration is lost when its 
power is off. On one hand, this implies a system overhead that external permanent 
memory such as a Read-Only Memory (ROM). Programmable Read - Only Memory 
(PROM) or a disk is needed to store and provide programming configurations. On 
the other hand_ volatility gives SRAM-based FPGAs better design security because 
a design configuration is lost when power is removed. 

 
Figure 1.11: SRAM-Controlled Programmable Switch 

www.getmyuni.com



FPGA Short Course 

Introduction to FPGA  10\16 
 

� 
3.1.2 Anti-fuse Programming Technology 
 
An anti-fuse is a two-terminal, one-time programmable circuit element with high 
resistance (> 100 MΩ) between its terminals in the unprogrammed state and low 
resistance (= 500 Ω) in the programmed state. 
Programming is performed by applying a higher-than-operating voltage (say, 18 V) 
across the anti-fuse’s terminals, causing the dielectric breakdown and drastically 
reducing the device resistance. 

 

 
Figure 1.12: The Anti-fuse Programming Technology 

(a) The ONO anti-fuse structure (b) The amorphous anti-fuse structure 
 
Two major advantages of the anti-fuse are its small size and relatively low ON 
resistance and OFF capacitance; for example, the size of an amorphous anti-fuse is 
approximately 1 µm2 in a 0.65 micron process. These advantages allow a much 
denser switch population and thus could alleviate the routing constraints imposed by 
the limited connectivity of routing resources. However, anti-fuse programming 
technology has the following major disadvantages: relatively complex manufacturing 
process and non-reprogrammability. 
 
3.1.3 EPROM and EEPROM Programming Technology 
 
An ultraviolet (UV)-erasable PROM (EPROM) is typically based on a floating gate 
structure as illustrated in Figure (1.13). If sufficient charge is trapped on the floating 
gate by applying higher-than-operating voltages between the control gate (13-14 V) 
and the drain of the transistor (12 V), the floating gate becomes charged negatively.  
The process increases the threshold voltage of the transistor to around 7 V, setting 
the transistor to the OFF state for all normal circuit voltages, maximally 5-6 V. The 
process can be reversed out-of-circuit by exposing the floating gate to UV light, 
giving the trapped charge sufficient energy to escape from the gate dielectric; this 
process reduces the threshold voltage and makes the transistor function normally. 
 
The Electrically Erasable PROM (EEPROM) programming technology typically uses 
two transistors, one access and one programmed transistors, in a ROM cell. The 
programmed transistor performs the same function as the floating gate in an 
EPROM, with both charge and discharge being done electrically in-circuit without UV 
light, The access transistor allows programming of a cell. 
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Figure 1.13: The EPROM Programming Technology 

(a) UV-erasable EPROM Structure (b) Circuit Symbol for a floating-gate EPROM 
 
The major advantages of EPROM and EEPROM technologies are their 
reprogrammability and full testability before shipment, especially for EEPROM. Also, 
unlike the SRAM technology, EPROM or EEPROM requires no external permanent 
memory to program the chip at power-up. However, the EPROM, EEPROM 
technology suffers from some drawbacks such as relatively high ON-resistance, high 
static power consumption, and complicated manufacturing processes 
 
Table 1.3: Comparison of Programming Technologies 

Programming 
Technology SRAM 

ONTO Anti -
fuse 

Amorphous 
Anti-fuse EPROM EEPROM 

Manufacturing complexity +++ + + - -- 

Reprogrammable? Yes  
In Circuit 

No No Yes 
Out of Circuit 

Yes 
In Circuit 

Physical Size Large (20X) Small (2X) Small (1X) Large (40X) Large (80X) 
ON Resistance (O) 600-800 100-500 30-80 1-4 K 1-4 K 
OFF Resistance (O) 10-50 3-5 1 10-50 10-50 
Power Consumption ++ + + - - 

Volatile? Yes No No No No 

 
3.2 Logic Module Architecture 
 
A logic circuit is implemented in a CPLD/FPGA by partitioning logic into individual 
logic modules and then interconnecting the modules by programming switches. A 
logic module has a fixed number of inputs and outputs. Certain set of functions can 
be implemented using a logic module_ depending on the functionality of the module. 
The logic modules of a high-capacity commercial programmable device are typically 
based on lookup tables, multiplexers, transistor pairs, basic logic gates, or SPLDs, 
with the first four types being popular in FPGAs and the last in CPLDs. We detail 
lookup table, and multiplexer-based logic modules in the following. 
 
3.2.1 Lookup Table-based Logic Modules 
 
A lookup table (LUT) based logic module is a segment of SRAM. The programming 
data defining the logic configuration are loaded into the SRAM at power-up. A K-
input LUT is a 2K × 1 SRAM with K address lines served as inputs and the 1-bit 
SRAM output as the LUT output. For example, if the function f = ab + a!c needs to be 
implemented using a 3-input LUT, then the truth table shown in Figure 1.14(a) is 
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loaded into the LUT, and thus the 23 × 1 SRAM would have a 0 stored at address 
000, a 1 at 001, etc_ as given in the truth table. 
 

a B c F 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

(a)      (b) 
 

Figure 1.14: Look-up Table Logic (a) Truth Table (b) An 8 × 1 SRAM 
 
The main advantage of LUTs lies in their high functionality, a K-input LUT can realize 
any function of up to K inputs and there are 2 ^ 2k such functions. However, the 
LUTs are only feasible for small values of K because 2K memory cells are required 
for a K-input LUT with only combinational logic; typically, the value of K is 3, 4, 5  
or 6. Further, the value of K may be even smaller in order to implement multi-output 
or sequential logic. 
 
3.2.2 Multiplexer-based Logic Modules 
 
A multiplexer-based logic module is typically composed of a tree of 2-to-1 
multiplexers. For example, the Actel ACT 3 C-Module, shown in Figure (1.15) 
consists of three 2-to-1 multiplexers. 
The inputs to the logic module are either data inputs d0, d1, d2, d3 or the multiplexer 
select inputs s0, s1, s2, s3. Therefore, the logic module can be used to implement a 
wide range of different functions of up to eight variables, (specifically, 766 functions 
for the logic module); for example_ the function f = ab + a!c can be realized by 
setting d0 =1 x, d1 = x, d2 = c, d4 = b, s0 = a, s1 = 1, s2 = 1 and s3 = x, where x means 
don’t-care. Also flip-flops can be incorporated into the multiplexer-based logic 
module to implement sequential logic. 
 

 
Figure 1.15: Multiplexer-based Logic Module 

 
8 × 1 
MUX 

a 
b 
c 

 
f 
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Figure 1.16: FPGA Configurable Logic Block 

 
3.3 Routing Architecture 
 
The interconnect architecture of a CPLD/FPGA includes routing resources and their 
interconnection topology on the CPLD/FPGA. CPLD/FPGA routing resources consist 
of pre-fabricated wire segments and programmable switches; routing in a 
CPLD/FPGA is performed by programming the switches to connect the wire 
segments. There are four major interconnection topologies for commercial 
CPLDs/FPGAs: array-based, row-based, sea-of-gates, and hierarchical models. 
 
An array-based FPGA consists of a two-dimensional array of logic modules which 
can be connected by general routing resources (See Figure 1.17a). As mentioned 
earlier, the logic modules house circuits that implement logic functions. The routing 
resources comprise horizontal and vertical routing tracks and user-programmable 
switches. 
A row-based CPLD/FPGA consists of multiple rows of logic modules (See Figure 
1.17b). Routing wires run in the channels between two adjacent rows and also inside 
the channels vertically. There are additional global vertical wires providing 
connections among different rows (not shown in Figure 1.17b). 
Unlike the array- and row-based architectures where there are routing channels 
separating logic modules, all logic modules in a sea-of-gates structure directly abut 
(See Figure 1.17c). The close proximity of logic modules allows direct connections 
between adjacent modules, significantly improving circuit performance. A routing 
network runs over the top of the modules, enabling efficient use of the available  
chip area. 
The hierarchical structure is composed of logic modules connected by multiple levels 
of interconnect (See Figure 1.17d). At the first hierarchical level, several logic 
modules form a group, and local routing resources for the modules are provided. 
Together, the logic modules and their interconnect form a local component. Again, 
the second level of interconnect ties together a group of the components of the first 
level, with shared routing resources for the components. The construction for higher 
levels of components proceeds in the same manner. 
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Figure 1.17: The four major CPLD/FPGA architectures 
(a) The array-based model (b) The row-based model 
(c) The sea-of-gates model (d) The hierarchal model 

 
3.4 Logic Gates implementation with multiplexers 
 
The basic building block of any combinational circuit in FPGA is the multiplexer. 
Using one multiplexer, we can implement all the combinational circuits. The following 
figure shows how AND, OR and NOT gates are implemented inside an FPGA.  
Of course, any other combinational circuit can be represented in a SOP form and 
hence will be a combination of multiplexers with appropriate connections. 

 

 
 

if a = 0 ⇒ Output = 0 
if a = 1 ⇒ Output = b 

 

 
 

if a = 0 ⇒ Output = b 
if a = 1 ⇒ Output = 1 

 

 
 

if a = 0 ⇒ Output = 1 
if a = 1 ⇒ Output = 0 

 

 
 

 

 
 

 

 
 

Figure 1.18: Logic Gate Implementation with multiplexers 
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4. Top-Down Design Methodology 

 
FPGA Design Steps 
 

1. Read customer specs. 
2. Translate these specs into engineering specs. 
3. Design a complete architecture for your design. 
4. Design a test structure. 
5. Design the data entry (Block-diagrams, HDL files, state-machines, ... etc) 
6. Functional simulation 
7. Choose the vendor, family, device and speed grade of the FPGA chip. 
8. Run the synthesizer (Xilinix Synthesis Technology, Leonardo-Spectrum tool) 
9. Place and Route. 
10. Extract Delays (Standard Delay Format (SDF) files). 
11. Post Layout Timing simulation (*.hdl & *.sdf files simulation). 
12. Critical Path reduction (Pipelined processing or Parallel processing). 
13. Download the design on the target chip. 
14. Hardware testing. 
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5. Applications of FPGAs 

 
FPGAs have gained rapid acceptance and growth over the past decade because 
they can be applied to a very wide range of applications. A list of typical applications 
includes: random logic, integrating multiple SPLDs, device controllers, 
communication encoding and filtering, small to medium sized systems with SRAM 
blocks, and many more. 
 
Other interesting applications of FPGAs are prototyping of designs later to be 
implemented in gate arrays, and also emulation of entire large hardware systems. 
The former of these applications might be possible using only a single large FPGA 
(which corresponds to a small Gate Array in terms of capacity), and the latter would 
entail many FPGAs connected by some sort of interconnect; for emulation of 
hardware, QuickTurn [Wolff90] (and others) has developed products that comprise 
many FPGAs and the necessary software to partition and map circuits. 
 
Another promising area for FPGA application, which is only beginning to be 
developed, is the usage of FPGAs as custom computing machines. This involves 
using the programmable parts to “execute” software, rather than compiling the 
software for execution on a regular CPU. The reader is referred to the FPGA-Based 
Custom Computing W orkshop (FCCM) held for the last four years and published by 
the IEEE.  
 
When designs are mapped into CPLDs, pieces of the design often map naturally to 
the SPLD-like blocks. However, designs mapped into an FPGA are broken up into 
logic block-sized pieces and distributed through an area of the FPGA. Depending on 
the FPGA’s interconnect structure, there may be various delays associated with the 
interconnections between these logic blocks. Thus, FPGA performance often 
depends more upon how CAD tools map circuits into the chip than is the case for 
CPLDs. 
 
We believe that over time programmable logic will become the dominant form of 
digital logic design and implementation. Their ease of access, principally through the 
low cost of the devices, makes them attractive to small firms and small parts of large 
companies. The fast manufacturing turn-around they provide is an essential element 
of success in the market. As architecture and CAD tools improve, the disadvantages 
of FPDs compared to Mask-Programmed Gate Arrays will lessen, and 
programmable devices will dominate. 
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